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Abstract

Health impact assessments (HIAs) inform policy and decision making by providing information 

regarding future health concerns, and quantitative HIAs now are being used for local and urban-

scale projects. HIA results can be expressed using a variety of metrics that differ in meaningful 

ways, and guidance is lacking with respect to best practices for the development and use of HIA 

metrics. This study reviews HIA metrics pertaining to air quality management and presents 

evaluative criteria for their selection and use. These are illustrated in a case study where PM2.5 

concentrations are lowered from 10 to 8 µg/m3 in an urban area of 1.8 million people. Health 

impact functions are used to estimate the number of premature deaths, unscheduled 

hospitalizations and other morbidity outcomes. The most common metric in recent quantitative 

HIAs has been the number of cases of adverse outcomes avoided. Other metrics include time-

based measures, e.g., disability-adjusted life years (DALYs), monetized impacts, functional-unit 

based measures, e.g., benefits per ton of emissions reduced, and other economic indicators, e.g., 

cost-benefit ratios. These metrics are evaluated by considering their comprehensiveness, the 

spatial and temporal resolution of the analysis, how equity considerations are facilitated, and the 

analysis and presentation of uncertainty. In the case study, the greatest number of avoided cases 

occurs for low severity morbidity outcomes, e.g., asthma exacerbations (n=28,000) and minor-

restricted activity days (n=37,000); while DALYs and monetized impacts are driven by the 

severity, duration and value assigned to a relatively low number of premature deaths (n=190 to 

230 per year). The selection of appropriate metrics depends on the problem context and 

boundaries, the severity of impacts, and community values regarding health. The number of 

avoided cases provides an estimate of the number of people affected, and monetized impacts 

facilitate additional economic analyses useful to policy analysis. DALYs are commonly used as an 

aggregate measure of health impacts and can be used to compare impacts across studies. Benefits 

per ton metrics may be appropriate when changes in emissions rates can be estimated. To address 

community concerns and HIA objectives, a combination of metrics is suggested.
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1. Introduction

Air quality management requires the consideration of a complex array of technical, 

economic, legal and political factors. In the U.S., statutory obligations are placed on state 

and local governments to attain ambient concentrations and meet other standards set by the 

US Environmental Protection Agency (US EPA). Historically, compliance with standards 

has been achieved by emission reduction strategies that addressed a single pollutant at a 

time, and targeted local and culpable sources for emission reductions, at the same time 

incorporating effects of the broader emission reductions accomplished by national emission 

standards. As air quality standards continue to be strengthened and easily implemented 

controls become rarer, decision makers must consider a wider range of policy measures. 

Since interventions aimed at reducing ambient pollution levels can affect the health of those 

living and working in the affected area (Henschel et al., 2012), it is becoming increasingly 

important to assess the nature and magnitude of potential health impacts, thus avoiding both 

unintended health consequences and missed opportunities to improve public health (NRC, 

2011).

Health impact assessments (HIAs) use a variety of techniques to evaluate and compare 

potential health impacts of proposed projects, policies and plans with the key objectives of 

understanding the direction, magnitude, severity and distribution of impacts (Bhatia et al., 

2014). HIAs and similar analyses have been conducted at multiple scales and for different 

purposes. At the national or global scale, accountability research, burden of disease, and 

other studies are used to evaluate the disease burden due to pollution (Fann et al., 2012b; 

Lim et al., 2012), the incremental impact of alternative policies and scenarios, e.g., different 

levels of an ambient standards (Chanel et al., 2014; Dias et al., 2012; Heal et al., 2013), to 

apportion health impacts by source industry (Fann et al., 2013), and to explain the benefits 

of standards, e.g., the avoided 230,000 premature deaths annually by 2020 due to 

implementation of PM2.5 controls between 1990 and 2005 in the US (US EPA, 2011). At 

regional (sub-national), urban and project scales, HIAs can be conducted in a policy context, 

but more commonly to gauge potential impacts and benefits of specific actions. In particular, 

HIAs conducted by health departments, academic researchers or advocacy groups often aim 

to incorporate health outcomes in policy and decision making (Dannenberg and Wernham, 

2013).

Due to limitations in the scope and available data, most HIAs have been qualitative rather 

than quantitative (Rhodus et al., 2013). While qualitative assessments can convey the 

direction and magnitude of impacts, quantitative methods offer more explicit information 

regarding impacts of potential interventions or the status of abatement policies (Bhatia and 

Seto, 2011). Several guides for the design and implementation of HIAs have provided 

recommendations for screening, scoping, and impact assessment steps of the HIA process. 
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However, there are few recommendations for reporting and communicating results (Hebert 

et al., 2012). Metrics that effectively communicate impacts to stakeholders and decision-

makers need to be identified.

Tools developed to facilitate the systematic quantification of impacts produce different 

metrics. The Environmental Benefits Mapping and Analysis Program (BenMAP) developed 

by the US EPA and the Air Quality Benefits Assessment Tool (AQBAT) used by Health 

Canada report impacts as attributable cases and monetized impacts (Judek et al., 2006; US 

EPA, 2015a). Air pollution accountability research tends to favor these metrics (Bell et al., 

2011). The Integrated Environmental Health Impact Assessment System developed for the 

European Union (Briggs, 2008) uses time-based health metrics (e.g., disability adjusted life 

years, DALYs). Originally developed for the comparative risk assessment framework 

(Murray, 1994), these metrics summarize different health effects with varying degrees of 

severity into a single figure (de Hollander and Melse, 2006; Hofstetter and Hammitt, 2002).

Health impacts associated with air pollution vary by duration (chronic or transient), degree 

(severe or minor) and temporality (caused shortly after exposures or lagged by several 

years). Urban-scale HIAs can address projects or policies that affect the entire urban area or 

a specific segment of the population. Thus, the applicability of the certain health metrics 

may depend on the boundary of the HIA, the severity of the predicted impacts, and 

community values regarding health. Previous reviews have discussed differences between 

qualitative and quantitative HIAs (Bhatia and Seto, 2011; O’Connell and Hurley, 2009), but 

the types of metrics used in quantitative urban-scale HIAs have not been addressed.

The goal of this paper is to evaluate quantitative metrics used in HIAs and similar analyses 

that are relevant to air quality management at the urban and potentially regional scales. The 

metrics are evaluated using explicit criteria, and demonstrated using a case study that 

focuses on particulate matter less than 2.5 µm in diameter (PM2.5). The paper concludes 

with recommendations for those metrics that can best inform decision-makers.

2. Methods

Literature published between 2011 and 2015 was reviewed to identify HIA metrics used for 

both project and policy applications. Reviews and critiques of HIAs (in both the peer-

reviewed and grey literature) and original peer-reviewed articles were examined, and 

included studies that evaluated the burden of disease attributable to ambient air pollution, 

the health benefits of proposed ambient air quality standards, and policies to reduce 

pollutant levels (e.g., active transport). The HIAs identified in the literature ranged in scale 

from multi-national to urban. Recent regulatory impact analyses (RIAs) by US EPA were 

also reviewed (US EPA, 2015b, 2014, 2012a). Selected metrics include the predicted 

number of cases, time-based metrics, impacts per unit emissions, and monetized impacts.

Evaluative criteria were identified from two sources. First, findings of the reviewed 

quantitative HIAs were used to identify key characteristics relevant to air quality metrics, 

e.g., metrics should account for population dynamics since pollution-related health effects 

can lag years behind exposures (Flachs et al., 2013). Second, review articles and 
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commentaries from the health indicator literature were examined to identify additional 

criteria, e.g., the comparability of metrics across populations of different size (Walker et al., 

2007).

A case study demonstrates the formulation, use, strengths and limitations of the metrics. 

This uses Detroit, Michigan and the surrounding county (Wayne), a mostly urban and 

suburban region (area of 1600 km2, population of 1.8 million) that has a mix of industrial, 

commercial, area and mobile emission sources. The county scale was selected due to the 

availability of emission and other data. A scenario is evaluated in which PM2.5 

concentrations are uniformly lowered across the county from 10 to 8 µg/m3, reflecting a 

policy that reduces concentrations below the current national annual average standard of 12 

µg/m3 (US EPA, 2013a). The analysis follows the method reported by Fann et al. (2012) 

with several differences. To examine potential differences between HIA methodologies, two 

methods (detailed below) are used to estimate mortalities attributable to changes in PM2.5 

levels. In addition to the concentration-response (CR) estimates included in the BenMAP 

software, cause-specific mortality CR estimates developed for the recent Global Burden of 

Disease (GBD) study (Burnett et al., 2014; Lim et al., 2012) are used. To assess the 

sensitivity of results to national, county and local scale data, attributable rates for premature 

mortality are calculated using baseline rates for the US as a whole, Wayne County 

(including Detroit), and Detroit separately. To facilitate these analyses, a simple spreadsheet 

model is used that does not represent spatial differences in air quality, population or impacts 

across the study area. Uncertainty in the number of avoided cases predicted for the case 

study is simulated using a Monte Carlo (MC) analysis (@Risk for Excel, Palisade 

Corporation). For each CR estimate, the distribution around the regression coefficient is 

specified based on the reported standard error. The simulation uses 5000 iterations to 

estimate the mean number of avoided cases and to construct 95% confidence intervals 

around the mean. The uncertainty in the number of avoided cases is propagated to the 

DALY and monetized impact metrics. Other sources of uncertainty for these summary 

metrics, e.g., uncertainty in disability weights or monetized values, are not included.

Additional information on the case study is found in the supplemental materials.

Emissions-based metrics (e.g., benefits per ton) use sector-specific 2011 PM25 emissions 

information for Wayne County (US EPA, 2012b). Annual emission rates are listed in 

Supplemental Table S6. Following source apportionments performed for Detroit (Buzcu-

Guven et al., 2007; Gildemeister et al., 2007), half (5 µg/m3) of the initial and existing 

PM2.5 is assumed to arise from local sources (e.g., direct PM25 emissions from industrial 

point sources, diesel and gasoline mobile sources, construction and road dust emissions, 

other non-point sources) that collectively emit approximately 7,000 tons per year; the other 

half arises from regional sources and the formation of secondary PM2.5. Using a “roll-back” 

method, a 2 µg/m3 reduction is achieved by reducing local emissions by 40%, or 2,800 tons 

per year. While simple, this approach attains results that reflect those from more complex 

methods that explicitly model sources and spatial variation (described later), and that are 

suitable for demonstrating the alternative health metrics. The benefits per ton metric is 

calculated by dividing avoided impacts (e.g., avoided cases and monetized impacts per year) 

estimated using a health impact function by the emission reduction.
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3. Results

3.1 HIA metrics in previous air quality and other studies

HIA applications have been summarized and critiqued in several reviews published in the 

peer-reviewed and 'grey' literature (Bhatia and Seto, 2011; Dannenberg and Wernham, 2013; 

Hebert et al., 2012; O’Connell and Hurley, 2009; Rhodus et al., 2013; Schuchter et al., 

2014). Many HIAs have been made publically available (Pew Charitable Trusts, 2014; 

UCLA HIA-CLIC, 2015). The following emphasizes HIAs involving air quality analyses.

Most urban scale HIAs have been conducted for urban planning, transportation and land use 

projects. In a review of 81 transportation, housing and infrastructure, land use and waste 

management HIAs conducted between 1999 and 2012 in the United States, 52% considered 

air quality impacts, in part due to the availability of models and other assessment tools, but 

only 28% used quantitative methods (Rhodus et al., 2013). In contrast, nearly all (37 out of 

38) HIAs examined in the peer-reviewed literature used quantitative metrics, and most of 

these studies (71%) were conducted outside of the United States. (These studies are 

summarized in Supplemental Table S1.) Typically, impacts are reported as the number of 

(avoided) cases attributable to changes in ambient concentration. Fewer studies have 

reported impacts using DALYs or monetized impacts. Only eight of these HIAs used 

multiple metrics. Sometimes these metrics were calculated using standardized platforms, 

e.g., BenMAP. Other metrics in HIAs or regulatory analyses include cost-effectiveness and 

cost-benefit indicators. A few studies used indicators designed for life cycle assessment 

(LCA). These metrics are detailed below.

3.1.1 Predicted cases—As noted, the most common quantitative HIA metric is the 

number of morbidities or premature mortalities attributed to a change in pollutant 

concentration. The number of predicted cases is calculated using two similar approaches. 

The population attributable fraction (PAF) method, endorsed by the WHO (Prüss-Ustün et 

al., 2003), represents the fraction of risk for an outcome attributable to a specific exposure. It 

is estimated for specific exposure concentrations using concentration-dependent relative 

risks (RR):

(1)

where RR = relative risk for the outcome, e.g., eβΔx for a log-linear risk coefficient where Δx 

= change in ambient concentration, β = the regression coefficient, and Pe = the probability of 

exposure (i.e., the fraction of the population that is exposed; Steenland and Armstrong, 

2006). For air pollution, the PAF is typically used to estimate the burden of disease relative 

to non-anthropogenic background levels. Multiplying the PAF by the baseline rate in the 

population (y0, cases person-1 year-1) and the number of people in the population (P) gives 

the number of attributable cases in the population. Recently, this approach has been used to 

estimate the burden of disease attributable to air pollution (Cárdaba Arranz et al., 2014; 

Hänninen et al., 2014), and to compare PM2.5 standards in Taiwan (Yang and Kao, 2013).
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The second method uses a health impact function (HIF) to estimate changes in outcome 

incidence. The HIF represents a simplified PAF where the entire population is considered 

exposed (e.g., Pe=1). The HIF depends on the form of the CR function, e.g., a log-linear CR 

estimate gives:

(2)

where ΔY = incremental change in the number of cases, y0 = baseline incidence rate (cases 

person-1 year-1), β = CR estimate (log relative risk), Δx = expected or measured change in 

concentration (µg/m3 or ppb), and P = exposed population (US EPA, 2015a). The HIF can 

estimate the incidence attributable to pollution relative to 'pristine' or 'background' levels 

(Fann et al., 2012b), but generally is used to evaluate incremental impacts associated with a 

change in concentration, e.g., effects of a new standard relative to existing concentrations 

(Berman et al., 2012; Boldo et al., 2014; US EPA, 2012a).

Both PAF and HIF methods require information including the size of the exposed 

population, baseline incidence rates for diseases associated with pollutants, baseline and 

exposure concentrations, and CR estimates or relative risks for each pollutant-outcome pair. 

Prospective applications also require projections of population size and baseline rates; 

retrospective applications need current and historical data. CR estimates are drawn from the 

epidemiological literature, including large observational studies (e.g., Jerrett et al., 2009; 

Krewski et al., 2009), as well as smaller studies of targeted populations (e.g., Mar et al., 

2004). CR estimates can be chosen from a single study or pooled across multiple studies. 

'Counterfactual' concentrations (CFCs) for PM2.5 between 5.8 and 8.8 µg/m3 have been used 

as comparison or baseline conditions to represent non-anthropogenic 'background' levels 

(Burnett et al., 2014; Krewski et al., 2009; Murray et al., 2003).

3.1.2 Disability-adjusted life years—Duration metrics consider the time lived with 

disability or the time lost due to early death, and are derived from the number of predicted 

cases. Years of life lost (YLL) is the difference between the age-specific remaining life 

expectancy (LE) and the age of premature death. Years living with a disability (YLD) is the 

time spent living with a morbidity (i.e., the case duration), weighted by a disability weight 

(DW) that reflects the degree of impairment as assigned using trade-off methods (Prüss-

Ustün et al., 2003), e.g., panel evaluation judging which hypothetical person with a 

randomly assigned disease is healthier (Salomon et al., 2012). YLL and YLD are calculated 

for each population stratum (e.g., age group, sex, race/ethnicity):

(3)

(4)

where Nj,a = number of avoided cases in stratum j and age group a, LEa = standard 

remaining life expectancy for age group a (in years), D = duration of the disease state (in 

years), and DW = disability weight for the morbidity outcome. DWs range from 0 (perfect 

health) to 1 (death).
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The calculation of YLLs requires the use of standard life tables to determine the remaining 

life expectancy for each age group. Life tables can be developed for each year of life and 

particular age intervals using age-specific mortality rates for the population of interest 

(Anderson, 1999); this information is available at country and state levels (MDCH, 2015; 

World Health Organization, 2015).

DALY metrics sum YLL and YLD (eqs. 3 and 4) across the population, thus aggregating 

across different outcomes (e.g., asthma exacerbation and premature mortality). DALYs are 

commonly used in burden of disease studies (Flachs et al., 2013; Hänninen et al., 2014), and 

have been used in policy evaluations (Rojas-Rueda et al., 2013) and life cycle impact 

assessments (Kassomenos et al., 2013).

Quality-adjusted life years (QALYs) provide an alternative approach to DALYs. QALYs 

were developed to provide a comprehensive measure of health in multiple dimensions, e.g., 

physical health and social well-being (Gold et al., 2002) using weights that range from 1 

(perfect health) to 0 (death; Sassi, 2006). Weights assigned to QALYs are not tied to a 

particular disease status, but rather look at an individual’s overall health state. In contrast, 

DALYs use disability weights that focus on a single disease and comorbidities are not 

considered (Gold et al., 2002). In this paper, we used DALYs as a summary measure of 

health given their use in previous studies (Supplemental Table S1).

3.1.3 Monetized impacts—Mortality and morbidity outcomes can be monetized to 

facilitate cost-benefit and cost-effectiveness analyses. For deaths, valuations often use the 

value of a statistical life (VSL), a monetary value assigned to a premature mortality based on 

willingness to pay (WTP), derived as what an individual would pay to reduce their risk of 

dying in the next year by a small amount, e.g., 1 in 100,000 (Hammitt, 2000). An alternative 

measure is the value of a statistical life year (VSLY), a value assigned to each YLL rather 

than to each premature death (Hammitt, 2007). For morbidity, valuations use the WTP or the 

average cost of an illness (COI), which incorporates medical expenses and societal costs, 

e.g., lost wages (Akobundu et al., 2006). Valuations can be discounted to account for the 

time-value of money, e.g., for an assumed 20 year lag between a concentration reduction 

and premature mortality, US EPA (US EPA, 2012a), suggests apportioning 30% of the 

mortality in the year following the concentration reduction, 50% in the 2nd through 4th years, 

and the remaining 20% between 6th and 20th years, and applying discount rates from 3 to 

7% per year (OMB, 2003). Valuations without lags represent the “maximum impact” case 

since all impacts are assumed to occur immediately following the concentration change.

3.1.4 Functional unit-based metrics—Additional health metrics are used in life cycle 

assessments (LCA), which provide a comprehensive assessment of a product or service. 

Most LCAs use streamlined approaches that quantify impacts on the basis of a functional 

unit, e.g., per ton of PM2.5 emitted. Characterization factors relate environmental stressors 

evaluated in an LCA to health outcomes, e.g., the ReCiPe framework defines DALYs per kg 

of PM2.5 emitted (Goedkoop et al., 2009).

Regulatory analyses have used metrics expressed as outcomes per ton of emissions. Such 

metrics may be advantageous when changes in emissions (rather than ambient 
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concentrations) are estimated, e.g., a rule requiring increased efficiencies for residential 

wood-burning heaters estimated monetized benefits of $380,000 per ton of PM2.5 emissions 

reduced (US EPA, 2015). This metric was derived using the expected change in emissions, 

dispersion modeling to estimate concentrations, HIFs to predict avoided cases, and 

economic valuations to monetize outcomes (US EPA, 2013).

3.1.5 Economic metrics—Economic metrics incorporate health measures along with 

resource constraints, typically expressed as the cost of implementing a policy or project. For 

example, cost-effectiveness metrics using benefit-cost ratios can compare monetized 

benefits, in part derived from HIAs, to expected costs (Johannesson, 1995). Such metrics are 

sometimes required, e.g., proposed regulation in the US undergo a regulatory impact 

analysis to demonstrate their cost-effectiveness (US EPA, 2010). The total cost of an air 

quality management strategy includes the direct expenditures made by polluters, e.g., costs 

of equipment, operation and maintenance, subsidies and financial incentives, and costs to air 

pollution control districts for planning, monitoring and enforcement; benefits include all 

avoided health, social and environmental impacts (Bower and Brady, 1981). It can be 

difficult to monetize all benefits of air quality management, particularly for secondary and 

tertiary impacts, e.g., climate change mitigation; the scope and uncertainty of such analyses 

can present challenges. In addition, cost-benefit analyses may mask equity concerns given 

their focus on efficiency and overall costs and benefits, rather than benefits to specific 

groups (de Groot, 1998). Despite their complexity and limitations, cost-benefit analyses can 

help select effective strategies, particularly for multi-pollutant strategies that may have high 

implementation costs but substantial health benefits (Chestnut et al., 2006).

The present analysis focuses on health metrics. The PM2.5 reduction in the case study might 

be achieved by a number of management strategies, which would likely vary in costs. Given 

the study's emphasis, we did not identify a specific strategy and thus did not estimate control 

costs or calculate economic metrics. While a full discussion of economic metrics utilizing 

HIAs is beyond our scope, guidelines for conducting economic analysis for environmental 

policy assessment have been presented elsewhere (US EPA, 2010).

3.2 Case study

The case study uses a 2 µg/m3 reduction in PM2.5 concentrations to illustrate the health 

impacts of the health metrics in urban scale air quality HIAs. The metrics could be used to 

compare control strategies directly, and they might be incorporated into broader 

environmental impact assessments, such as those specified by the National Environmental 

Policy Act (Bhatia and Wernham, 2008). As discussed previously, they also are necessary 

for cost-benefit and cost-effectiveness analyses, although the present paper is limited to an 

analysis of health impacts. The next section discusses implications for using health metrics 

in air quality management.

3.2.1 Predicted impacts—HIA results for the case study are summarized in Table 1. 

Additional details are provided in Supplemental Tables S7 and S8. Lowering PM2.5 levels 

from 10 to 8 µg/m3 is estimated to prevent 190 premature all-cause deaths, 230 cause-

specific deaths (the sum of chronic obstructive pulmonary disease (COPD), lung, trachea 
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and bronchus cancers, ischemic heart disease (IHD), and stroke deaths), 28,000 avoided 

asthma exacerbations and 37,000 minor restricted activity days per year (MRAD), i.e., days 

when individuals avoid typical activities and instead switch to less strenuous tasks without 

missing work or school. Attributable rates for avoided premature deaths are higher when 

based on Detroit mortality rates compared to those for all of Wayne County or the U.S. 

(Table 2). Similar distributions of impacts have been reported in the several studies that 

evaluated both mortality and morbidity outcomes (Berman et al., 2012; Chart-asa and 

Gibson, 2015; Fann et al., 2013, 2012b; Jakubiak-Lasocka et al., 2015; Voorhees et al., 

2014). All of these studies show that less severe outcomes make up the majority of avoided 

cases.

Avoided YLL, YLD and DALYs in the case study total 3052, 47 and 3099 years, 

respectively (Table 3). YLL is largest for the 60–64 year age group (17 premature deaths 

contribute 394 YLL; Figure 1). Premature deaths account for 98.5% of the total DALYs 

avoided in the population. Among morbidity outcomes, asthma exacerbations make the 

greatest contribution to population DALYs (30 YLD per year, Supplemental Table S7). 

Comparable contributions of YLLs and YLDs to the overall DALY have been reported 

elsewhere (de Hollander et al., 1999; de Hollander and Melse, 2006; Hofstetter and 

Hammitt, 2002).

The total monetized health benefit of the 2 µg/m3 change in Wayne County exceeds $1.9 

billion annually, most of which (95%) is due to premature mortality (Table 3, Supplemental 

Table S7). The most important morbidity outcomes are non-fatal myocardial infarctions 

(n=160, $23 million) and unscheduled hospitalizations (n= 150, $5.5 million). More 

common but less severe outcomes include work loss days (n=21,000, $3 million) and 

MRADs (n=37,000, $2.5 million). Though less frequent, hospitalization outcomes account 

for a large share of the monetized morbidity impacts. The large and dominant contribution 

of mortalities to the total monetized value parallels the PM2.5 RIA (US EPA, 2012) and a 

recent HIA in China (Voorhees et al., 2014).

For emissions-based metrics, the total monetized benefit (all mortality and morbidity 

outcomes) is $660,000 per ton of PM2.5, again, mostly due to mortality ($640,000 per ton; 

Table 4). Expressed using the number of cases, the more severe outcomes had the lowest 

benefit per ton, e.g., premature mortality were only 0.07 deaths avoided per ton, while 

avoided asthma exacerbations were 9.8 cases per ton and avoided MRAD were 13.1 cases 

per ton. The literature shows a wide range but generally lower benefits ($46,000 to $510,000 

per ton PM2.5; Fann et al., 2012a). The higher estimates in the case study likely result from 

the simplified roll-back approach, which incompletely accounts for distance and dispersion 

between sources and people, e.g., reductions from elevated stacks and sources farther 

removed from populations are expected to have lower impacts per ton of pollutant emitted 

(Fann et al., 2009). Nevertheless, the estimates produced by the case study are reasonable 

given its limitations, e.g., uniform reduction and rollback approach.

3.2.2 Case study limitations—The case study has a number of limitations. First, the 

same age-stratified baseline rates were applied across the population, and other sources of 

variability (e.g., neighborhood, gender) were omitted. Second, the population was held 
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constant. Recent work demonstrates some sensitivity to population growth or mobility 

(Baccini et al., 2015; Flachs et al., 2013; Tchepel and Dias, 2011). Third, a single CR 

estimate was used, although other valid CR estimates are available and can be used to 

represent uncertainties (described later). Fourth, lags and discounting were ignored, which 

can overestimate premature mortality impacts and further increase the dominance of 

mortality impacts since YLL estimates are higher for deaths at younger ages (based on life 

expectancy). Fifth, the exposure scenario did not account for urban scale spatial 

heterogeneity (Batterman et al., 2014; Sparks et al., 2014), which should be considered to 

accurately predict impacts (Punger and West, 2013; Thompson et al., 2014). Sixth, impacts 

due to only PM2.5 were considered. Pollution control policies can affect multiple pollutants 

and have additional impacts and co-benefits. Lastly, both annual and daily concentrations 

were assumed to undergo the same change (2 µg/m3), following methods used in other HIAs 

(Fann et al., 2012b). However, this approach may underestimates changes in daily peak 

concentrations, which often arise from local sources, and it assumes that the same areas and 

populations are affected by annual and peak concentrations. Alternately, daily changes in 

PM2.5 and HIFs drawn from studies of short-term exposures could be used to determine 

short-term health impacts. Despite these limitations, the case study results mirror trends seen 

in other air pollution HIAs, and the evaluations and comparisons of the different metrics 

should be valid and applicable to other cities and scenarios.

3.3 Evaluation of HIA metrics

The criteria suggested for evaluating HIA metrics (Table 5) reflect several goals. First, 

metrics should be accurate and comprehensive with respect to the overall impacts expected 

on a population, otherwise impacts may be underestimated and lead to biased evaluations. 

Second, metrics should consider the spatial and temporal distribution of impacts, thus 

accounting for the variation in exposure and population susceptibility. This variation, along 

with equity considerations, will likely require stratification by factors related to individual or 

group-level susceptibilities, e.g., age, socioeconomic status, or race/ethnicity (O’Neill et al., 

2008). Third, since impacts are associated with both short- and long-term exposure to 

pollutants, and long-term impacts may lag several years, accounting for lags is important. 

Fourth, metrics should be easily understood by a wide audience, particularly given limited 

understanding of HIA techniques, pollutant impacts, and the presence of competing 

interests, e.g., economic or political considerations. Fifth, predicted impacts and valuations 

in the metrics are inherently uncertain, and uncertainties are propagated as the number of 

required data inputs increases. Both quantitative uncertainty analyses and descriptive 

characterizations are needed to describe uncertainties and aid interpretation. The next 

section contrasts each metric against the evaluative criteria, drawing on case study results to 

highlight key points. Table 6 summarizes this evaluation.

3.3.1 Predicted cases—The inclusion of MRAD, work loss days, and other transient but 

relatively common morbidity outcomes yields more comprehensive analyses by indicating 

the numbers of people potentially affected. This can increase the HIA's salience, especially 

for diseases like childhood asthma that represent important public health issues. The case 

study (like most other HIAs) included only those outcomes where the weight of evidence for 

an association is strong. Less evidence exists regarding associations between PM2.5 and 
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other outcomes, including cancer and adverse birth outcomes. Following US EPA methods 

(US EPA, 2012a), these impacts were excluded. Such omissions may lead to systematic 

negative biases (O’Connell and Hurley, 2009).

The CR function is arguably the most important and most uncertain input in predicting 

attributable cases. The case study used a single CR function for most outcomes. Other CR 

estimates may be valid and available, and can be used to bound expected ranges or show 

uncertainties, e.g., Fann et al. (2012) noted a 2.5-fold variation in the number of premature 

deaths using CRs derived from two large multicity observational studies (Laden et al., 2006; 

RR= 1.16 per 10 µg/m3 vs. Krewski et al., 2009, RR=1.06 per 10 µg/m3). This variation may 

reflect differences in study population demographics, exposure patterns, and other factors. 

CR estimates should be drawn from well conducted epidemiological studies with sufficient 

statistical power. For local-scale HIAs, city-specific CR estimates, ideally from large multi-

city studies, may be advantageous because they account for specific population 

characteristics. However, such estimates often are not available. Large multicity cohort 

studies or meta-analyses can have considerable statistical power, but may not be fully 

representative of the population for the HIA. When selecting CR estimates for local-scale 

HIAs, it is important to consider how the original study population differs from the one 

included in the HIA (Hubbell et al., 2009).

Table 2 demonstrates the sensitivity of HIA results to the baseline health data. Compared to 

national averages (CDC, 2014), attributable rates increase when using data specific to 

Wayne County (by 18%) and Detroit (by 22%). Thus, the same 2 µg/m3 reduction yields a 

larger impact in Detroit given the susceptible population. Using local data in urban-scale 

HIAs can account for population susceptibility. In addition, baseline health as well as other 

vulnerability or susceptibility factors are likely to be unevenly distributed across an urban 

region, e.g., rates of asthma hospitalizations vary 3-fold across the study region and some of 

the highest rates are seen in more polluted areas. Areas with higher asthma rates are 

expected to have more avoided asthma exacerbations than areas with lower rates, given the 

same PM2.5 level. The use of spatially-resolved health and exposure data should increase the 

accuracy of HIA results, and could allow for the development of strategies that target 

pollutant reductions in areas that confer the greatest benefits

Most (74%) of the cause-specific deaths are due to ischemic heart disease (IHD, 

Supplemental Table S8). The number of cause-specific deaths avoided (n=230) slightly 

exceeds the number of all-cause premature deaths (n=190; Table 1). The CR functions used 

for cause-specific mortality were developed specifically for the latest GBD study (Lim et al., 

2012). These non-linear functions were derived from studies examining ambient air 

pollution, active smoking, secondhand smoke exposure, and cooking smoke exposure 

(Burnett et al., 2014). The shape of each cause-specific CR curve differs (see Burnett et al., 

2014, Figure 1), e.g. for IHD, the slope is steeper at lower concentrations and tends to flatten 

at higher PM2.5 levels. At low concentrations (including the 8 to 10 µg/m3 in the present 

analysis) where the IHD CR function is steepest, the PAF method gives a higher number of 

cause-specific deaths than the all-cause deaths estimated by the HIF. Generally, predictions 

using non-linear CR functions depend on the baseline and scenario concentrations, e.g., 

lowering PM2.5 concentrations from 11 to 9 µg/m3 avoids 182 cause-specific mortalities 
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(21% fewer deaths than the 10 to 8 µg/m3 scenario). The numbers of deaths predicted for 

these concentrations (679 and 498 deaths at 11 and 9 µg/m3, respectively) exceed those in 

the original case study (596 and 370 deaths at 10 and 8 µg/m3, respectively), but differences 

between the baseline and scenario deaths decreases at higher concentrations. These 

differences are small compared to uncertainties, as discussed below.

The case study also compared estimates of all-cause mortality predicted by the HIF and PAF 

methods using the same CR function from Krewski et al. (2009) (Table 1). For the specified 

scenario, the two methods gave the same number of avoided deaths (n=190). Differences 

between the HIF and PAF methods also result from differences in how health impacts are 

calculated, i.e., the HIF method uses the concentration difference (Δx = 2 µg/m3 in the 

scenario), while the PAF method compares attributable burdens across scenarios (Δx = 10 

µg/m3 – CFC). Thus, lowering PM2.5 from 20 to 18 µg/m3 still gives 190 avoided all-cause 

premature deaths using the HIF method, but PAF predictions decrease to 176 premature 

deaths. While these differences are small, the influence on DALYs and monetized impacts is 

large given the high values assigned to premature mortalities (discussed later).

The HIF (eq. 1) in the case study can predict short-term impacts, but with greater uncertainty 

than for long-term impacts. This paper focused on changes in long-term (annual average) 

concentrations, and mortality CR functions based on studies of chronic exposures were used, 

although the morbidity CR estimates came from short-term exposure studies (Supplemental 

Table S3). To derive short term impacts, it may be preferable to use mortality CR estimates 

drawn from short-term exposures studies (e.g., time series studies) with estimates of short-

term pollutant concentrations (e.g., daily PM2.5 concentrations). As noted earlier, short-term 

exposures likely will exhibit greater spatial and temporal variation than annual average 

concentrations, depending on proximity to the local emissions sources, meteorology, and 

other factors.

3.3.2 Disability-adjusted life years—YLLs, YLDs and DALYs facilitate comparison of 

impacts among different groups or cohorts in the population. For example, the number of 

avoided deaths in the 60–64 year age group is 36% lower than avoided deaths in the 80–84 

year age group, but the avoided YLLs in the younger group is 62% higher (Figure 1). Given 

the severity of premature deaths (quantified as the YLL), the 60–64 year age group receives 

the greatest benefit from the PM2.5 reduction. YLL may be particularly meaningful for 

premature mortality since deaths are delayed, rather than avoided (Rabl, 2003).

YLDs tend to deemphasize morbidity outcomes given the short durations of these impacts 

(e.g., 1 to 5 days) and the small DWs assigned (Table 3, Supplemental Table S4). For 

example, given the duration of an asthma exacerbation (0.005 years) and its DW (0.22), the 

28,000 asthma exacerbations avoided annually in the case study contributed only 30 YLDs 

to the total 3,100 DALYs predicted (Supplemental Table S7). For asthma, estimated YLDs 

due to emergency department visits or exacerbations may be underestimated since asthma 

exacerbations are under-reported (Reddel et al., 2009) and the time lost to avoidance 

behaviors (e.g., not participating in recreational activities) are excluded, potentially biasing 

HIA results.

Martenies et al. Page 12

Environ Int. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This discussion highlights several issues when disparate health outcomes are combined on 

the basis of duration and severity. In contrast, metrics using the number of cases avoided 

treat each outcome equally and avoid issues related to subjective weightings (de Hollander 

and Melse, 2006). Others argue that consideration of duration and severity is required to 

make trade-off comparisons between high and low impact outcomes (Wong et al., 2003).

3.3.3 Monetized Impacts—Like DALYs, monetized benefits of air pollution depend on 

outcomes included, but are driven by mortality, again due to the high value assigned to a 

statistical life. The VSL used for mortality ($9.6 million) far exceeds values for each 

morbidity outcomes (Supplemental Table S5). The lack of cessation lags and discounting in 

the case study is not expected to substantially alter results given the low social discount rates 

(3 to 7%) recommended (US EPA, 2012a). The valuation method endorsed by US EPA and 

used in the case study does not monetize deaths based on age using the VSLY or other 

approaches (unlike the DALYs in the previous section that considered the timing of death in 

estimating YLLs) (US EPA, 2010). VSL may overstate the value of premature deaths since 

deaths are delayed, rather than completely avoided. However, VSLY or methods that adjust 

VSL based on age can raise contentious issues regarding the value of a life saved for older 

populations (Robinson, 2007), and US EPA found little evidence to support age adjustments 

in VSL estimates (US EPA, 2010).

Monetized impacts, like DALYs, deemphasize morbidity outcomes due to their low and 

uncertain valuations. Morbidity outcomes are difficult to monetize accurately, and the WTP 

may underestimate the true societal costs. For example, asthma exacerbations accounted for 

only 0.08% of the total monetized impacts in the case study, despite being the second-most 

frequently avoided morbidity outcome (Supplemental Table S7). The value of $58 assigned 

to each exacerbation (Rowe and Chestnut, 1986) may incompletely account for medical 

costs or time lost at work or school. Monetized metrics may not reflect the sentiments of 

affected communities in Detroit and other urban areas where asthma outcome rates greatly 

exceed state and national norms (Wasilevich et al., 2008). The dominance of mortality 

outcomes has been demonstrated in Shanghai, China where air pollution-related deaths 

made up 92.5% of total monetized impacts (800 deaths monetized at 1.2 billion yuan 

compared to 420,000 morbidities monetized at 0.09 billion yuan) (Voorhees et al., 2014). 

Similarly, US EPA's recent RIA for ozone (O3) showed that 98% of the total monetized 

benefits ($2.0 to $3.4 billion) of a 70 ppb ozone standard would be due to avoided premature 

mortality from both short- and long term exposures (880 to 1,020 avoided deaths) (US EPA, 

2014).

Monetized metrics have been used in HIAs to facilitate comparisons among heath- and non-

health outcomes. For example, greater utilization of public transport that lowers pollutant 

levels (due to less personal vehicle use) will increase physical activity (due to additional 

walking), which promotes health. In a recent assessment of a Boston area proposal to alter 

transit pricing, the monetized impacts of physical activity ($75 million) far exceeded air 

pollution’s impacts ($1.5 million) (James et al., 2014). Including the co-benefits of air 

quality management can provide decision makers with information about the total impact of 

a strategy on public health, and potentially additional impetus for recommendations. Such 
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analyses can increase the HIA’s scope, complexity and uncertainty, but may be of particular 

value when the co-benefits are substantial.

3.3.4 Emissions based metrics—Emissions-based metrics are useful when it is more 

feasible to estimate changes in emissions rather than ambient concentrations, e.g., for a 

policy that requires the use of a specific control technology. Emission-based metrics also 

can identify specific emission sources that impose the greatest burden on the population 

given that contributions from specific sources to local air quality are known. The degree to 

which a specific source impacts the health of a population depends on a number of factors, 

including the proximity of the source to the population and local meteorological patterns. In 

order to use emissions-based metrics effectively, emissions inventory data need to be 

combined with dispersion modeling, population data, HIFs and the other data described 

previously (Fann et al., 2009). The case study assumed a 2 µg/m3 PM2.5 reduction using 

equal emissions reductions across multiple sectors, did not account for the distribution of 

sources in the population, and calculated aggregate benefits per ton. The highest benefit per 

ton of emissions reduced likely will occur for sources or sectors in populated areas that 

release pollutants near ground level, e.g., on- and off-road diesel engines in densely 

populated cities. Such analyses can be data intensive and potentially complex, thus data gaps 

and model uncertainties should be recognized and communicated to key decision makers 

and stakeholders. In cases, national average values for benefits per ton are available (e.g., 

US EPA, 2013b). However, each HIA scenario and each city may uniquely influence effects 

of location-specific characteristics (e.g., location, type, meteorological trends).

3.3.5 Uncertainty in health impact metrics—A simplified uncertainty analysis 

demonstrates the variability of HIA results due to CR estimates, identified as the single most 

important source of uncertainty for urban-scale HIAs (Chart-asa and Gibson, 2015). The 

most uncertain impacts are the low-severity outcomes, as shown by the wide confidence 

intervals (CIs) for the number of avoided impacts (Table 1). The CIs are symmetrical for 

mortality, respiratory and cardiovascular hospitalizations, emergency department visits, 

MRAD and WLD since the underlying CR estimates use log-linear models, while 

asymmetrical CIs result for non-fatal heart attacks and asthma exacerbations since these 

outcomes are based on logistic regression models. For the latter, the large upper "tail" of the 

distribution can greatly increase impacts, e.g., the MC analyses for non-fatal heart attacks 

and asthma exacerbations give means that are 6 and 11% higher, respectively, than the 

deterministic estimates that use the mean CR estimate (Table 1). Large CIs can cause 

additional issues, e.g., the 16% of the MC simulations for asthma exacerbations gave 

disbenefits (negative avoided impacts) (using the HIF estimate in Supplemental Table S3 

and a CR function drawn from a single study, Mar et al., 2004). Such implausible outcomes 

highlight the need to use CR estimates from well-powered studies that have small standard 

errors, to pool CR estimates among multiple studies, or to truncate negative avoided 

impacts.

Uncertainty estimates due to parameter uncertainty have been estimated using MC analyses, 

Bayesian methods, and sensitivity analyses, and a few HIAs have considered uncertainties in 

model structures (e.g., Baccini et al., 2015; Chanel et al., 2014; Chang et al., 2014; Chart-asa 
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and Gibson, 2015; Woodcock et al., 2014; Xia et al., 2015; reviewed in Mesa-Frias et al., 

2013). For the number of avoided cases, uncertainty arises from CR estimate, baseline 

health outcome rates, and changes in exposure concentrations. These uncertainties are 

propagated to and potentially increase for other metrics, e.g., as mentioned, additional 

uncertainties in DALYs include the duration of outcomes and the subjective assignment of 

disability weights. Similarly, monetized metrics must contend with the subjectivity and 

variability of valuations. Ideally, uncertainty analyses would consider all sources of 

variability, including dependencies among inputs. If the total uncertainties among competing 

mitigation strategies are very large, then quantitative HIAs may not inform the remedy 

selection, and decisions may rest on economic or other criteria. However, estimates of both 

health impacts and uncertainties can motivate the need for mitigation, especially if decision 

makers are risk averse (IOM, 2013). For example, an MC analysis examining health impacts 

due to vehicle emissions in Chapel Hill, North Carolina (examining uncertainty in CR 

estimates, PM2.5 emissions, exposure concentrations and demographics) gave a substantially 

higher number of cases compared to deterministic results (Chart-asa and Gibson, 2015). 

Such uncertainties should be calculated and reported to decision makers.

Quantitative uncertainty analyses themselves have shortfalls. There are substantial data gaps 

regarding the variability and uncertainty of data, as well as the interactions among variables. 

Many analyses use a simplified bounding approach that does not indicate the likelihood or 

confidence intervals of possible outcomes. As mentioned, weight-of-evidence limitations 

may preclude consideration of potentially important outcomes. For these reasons, 

characterizing the limitations of the uncertainty analysis itself is important.

3.3.6 Co-benefits of air pollution management—Although excluded in the case 

study, HIA metrics can incorporate co-benefits of pollution control policies. For example, 

incentivizing active transportation to replace short car trips reduces emissions and can 

increase physical activity with significant health benefits (Maizlish et al., 2013). Strategies 

that promote active and public transportation also decrease the frequency of traffic-related 

car crashes (Rojas-Rueda et al., 2013; Xia et al., 2015). Increasing tree cover in cities 

removes pollutants from urban air sheds (Nowak et al., 2013) and can be advantageous for 

surface cooling and storm water management (Loughner et al., 2012; Wang et al., 2008).

Climate change mitigation and adaptation are major co-benefits of air pollution 

management. The transportation sector is responsible for 27% of total greenhouse gas 

(GHG) emissions in the US (US EPA, 2015c) and 23% of CO2 emissions globally (IEA, 

2014). Transportation policies aimed at reducing primary pollutant emissions, particularly 

those that reduce travel demand or fuel consumption, lead to reductions in GHG emissions 

(McCollum and Yang, 2009). Comparisons between policy options should consider the 

health impacts of reduced primary pollutant emissions as well as the environmental and 

health benefits of reduced GHG emissions.

Co-benefits can be indirect, secondary in nature and long term, and thus difficult to assess. 

Still, using common metrics to link these outcomes to public health makes the health metrics 

more comprehensive and compelling. Again, appropriate outreach and education may be 

required to inform decision makers.
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3.3.7. Challenges of the use of quantitative HIA methods—A number of 

challenges may be encountered when applying the methods in this paper to other regions. 

First, urban-scale HIAs are best conducted using local baseline health data that reflect the 

health status of the population (Hubbell et al., 2009). Sub-national health data may not be 

available where public health resources are limited, e.g., developing countries, especially for 

morbidity outcomes (Boerma and Stansfield, 2007). Second, most epidemiological studies 

have been conducted in the USA and Europe where concentrations tend to be lower than 

other parts of the world, and CR estimates derived from these studies used in other 

populations have limitations, e.g., while the GBD risk estimates combine several exposure 

sources, estimates include only mortality outcomes and respiratory infections in young 

children (Burnett et al., 2014). Third, suitable (e.g., long-term) air quality data for exposure 

assessment may not be available in many regions. While concentrations can be estimated, 

e.g., satellite data and global chemical transport models have been used to derive 

concentrations at coarse spatial resolution (10 km × 10 km, van Donkelaar et al., 2010), such 

methods also have uncertainties and may not capture urban-scale patterns necessary for 

local-scale HIAs. Fourth, regions differ with respect to pollutant sources, e.g., vehicle 

emissions may dominate exposures in the developed countries, while cooking and home 

heating emissions from biomass combustion may dominate exposures in developing 

countries. Such differences will shape the nature of control strategies. Due to these and 

possibly other reasons, site-specific, comprehensive and quantitative HIAs may not be 

feasible in some regions. Still, approximations using the approach with surrogate or 

estimated data may be valuable, and can serve to highlight data gaps.

3.4 Recommendations

Several recommendations follow from our analysis of the literature and the case study. First, 

if requisite data are available, HIAs should use quantitative metrics to assess health impacts 

and provide meaningful evidence regarding health benefits to decision makers formulating 

air quality management plans (Fann et al., 2011). Quantitative analyses permit explicit 

comparisons between options, better characterization of the magnitude of impacts for 

specific outcomes, estimates of the total number of people affected, and a framing of health 

outcomes in the same manner as other policy considerations. Quantitative metrics also 

enable decision makers to more readily incorporate HIA results into the policy process 

(Davenport et al., 2006). Because they describe concentration-dependent impacts, such 

metrics allow estimates of benefits for air quality improvements that go beyond standard 

attainment. The case study example was limited to PM2.5 reductions, but multi-pollutant 

frameworks should be used (Dominici et al., 2010; Johns et al., 2012; Oakes et al., 2014).

Second, since no single metric fully meets the evaluative criteria, the use of several 

complementary indicators is recommended. The number of cases avoided is simple and easy 

to interpret, but does not account for the severity of the outcome. To be comprehensive, 

urban-scale HIAs should report the number of avoided cases for multiple relevant health 

outcomes, and cases should be disaggregated into subgroups to allow consideration of 

equity, location, race/ethnicity, age, and other relevant factors. Consideration of multiple 

health outcomes in quantitative HIAs yields estimates of the total number of people affected, 

an important indicator itself. However, such estimates may undercount the total number of 
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people affected since not all outcomes are captured. In addition, estimates of morbidity 

outcomes can have considerable uncertainty, and possible outcomes with limited evidence 

are excluded. Despite these limitations, inclusion of morbidity outcomes is important for 

evaluating strategies that may not lead to substantial numbers of avoided deaths, and for 

minimizing biases that would tend to underestimate the public health impacts. Estimates of 

morbidity outcomes and the number of people affected should be recognized as a "low end" 

estimate that complements all-cause mortality estimates, and that provides additional 

information useful for comparing among management options. DALYs incorporate the 

severity, duration and timing of outcomes, but are complex and require additional data 

inputs (including uncertain disability weights); moreover, decision makers may not readily 

understand this metric. Still, DALYs find widespread use in studies of population health, 

and can aggregate health impacts of policies and programs allowing comparisons across 

studies. Monetized impacts share many of the same uncertainties as DALYs, and similarly, 

are driven by mortality, however, these metrics are familiar to decision makers and can be 

used in other policy evaluations (e.g., cost-benefit analysis). No single summary measure 

fully captures societal impacts associated with morbidity. Still, HIAs should utilize a 

composite indicator like DALYs or monetized values that allow ranking of options.

Third, metrics should be tailored to the local context. Some metrics may be particularly 

useful and favored in certain applications. For example, emissions-based metrics can 

facilitate comparisons between sectors and between options within a sector, and maybe 

particularly useful if policy options involve control technologies or if monetized benefits per 

ton vary considerably by sector and source. Urban-scale HIAs are not limited to an 

emissions context, and can also be used to inform decision makers about the benefits of 

alternative exposure reduction strategies, e.g., use of vegetative buffers along highways, 

rerouting trucks to avoid residential neighborhoods, or use of indoor air filtration. Evidence 

from quantitative HIAs can encourage decision makers to implement such interventions, 

especially when the number of people affected is high and the intervention is viewed as cost-

effective.

Fourth, community values should be considered in selecting metrics that are appropriate for 

urban scale HIAs. DALYs and monetized impacts place a high value on mortality. However, 

morbidity outcomes are far more common. DALYs or dollars might poorly capture local 

attitudes regarding less severe outcomes, e.g., asthma exacerbations. Engagement with 

stakeholders at early stages of the HIA would best serve to prioritize outcomes and metrics 

(Dannenberg et al., 2006).

Fifth, HIAs are strengthened by drawing on local information, including emission and 

dispersion data, to understand source-receptor relationships, including spatial variability, 

demographic and vulnerability information, and epidemiological evidence for concentration-

response functions.

Sixth, environmental and health co-benefits of air quality management strategies, including 

climate change mitigation, should be identified. When requisite data are available, these co-

benefits should be quantified using the same metrics selected for air pollution health 
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impacts, thus increasing the comprehensiveness of the overall assessment of control 

strategies.

Lastly, quantitative HIAs may underestimate the total impact of a policy or program because 

certain environmental or health impacts cannot be reliably quantified. Qualitative methods 

can augment the quantitative analyses and identify potential health and environmental 

outcomes that do not have reliable CR estimates, e.g., cancer and adverse birth outcomes.

4. Conclusions

This study reviewed quantitative metrics in recent HIAs addressing air pollutant exposure, 

and developed evaluative criteria for selecting and using metrics. The metrics were 

illustrated in a case study for the Detroit, Michigan area. Quantitative metrics describing the 

direction, magnitude and severity of expected health impacts can help inform decision 

makers and elevate health concerns to the level of other political and economic drivers into 

evaluations of projects, programs and policies. Different metrics prioritize different health 

outcomes. For examples, the number of avoided cases emphasizes common but lower 

severity impacts (e.g., minor restricted activity days and asthma exacerbations), while 

monetized impacts and DALYs emphasize the relatively small number of premature 

mortalities.

A number of recommendations were developed for selecting metric appropriate for air 

quality applications. Metrics should be comprehensive, identify the number of people 

affected for each morbidity and mortality outcome, and clearly communicate both direct and 

indirect impacts. Further, metrics should use local data (e.g., baseline rates from the study 

population), incorporate outcomes of high public health importance, and represent the 

spatial and temporal dimensions of impacts. Uncertainties and limitations should be 

characterized quantitatively and qualitatively, and reported to decision makers. While 

appropriate metrics depend on the application, most HIAs would benefit from several 

metrics that capture impacts to specific population groups as well as overall health impacts.
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Abbreviations

AQBAT Air Quality Benefits Assessment Tool

BenMAP Environmental Benefits Mapping and Assessment Program

CDC Centers for Disease Control and Prevention

CFC Counterfactual concentration
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COI Cost of illness

COPD Chronic obstructive pulmonary disease

CR Concentration-response

DALYs Disability-adjusted life years

DW Disability weight

GBD Global burden of disease

GHG Greenhouse gas

HIA Health impact assessment

HIF Health impact function

IHD Ischemic heart disease

LC Lung, trachea and bronchus cancer

LCA Life cycle analysis

LE Life expectancy

MC Monte Carlo

MRAD Minor restricted activity days

NOx Oxides of nitrogen

O3 Ozone

PAF Population attributable fraction

PM2.5 Particulate matter less than 2.5 µm in diameter

QALY Quality adjusted life year

RIA Regulatory impact analysis

RR Relative risk

US EPA United States Environmental Protection Agency

VSL Value of a statistical life

VSLY Value of a statistical life year

WHO World Health Organization

WTP Willingness to pay

YLD Years living with disability

YLL Years of life lost
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Highlights

HIAs have used many metrics, including avoided cases, DALYs and monetized impacts.

There is a need to identify appropriate metrics for use in urban-scale air pollution HIA.

Metrics should be comprehensive, spatially and temporally resolved, and account for 

vulnerability.

Metrics should evaluate and clearly present uncertainty.

The use of multiple metrics is suggested to fully characterize the impacts of a proposed 

policy.
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Figure 1. 
Number of avoided premature deaths and years of life lost (YLL) per year by age group in 

Wayne County for a reduction in PM2.5 concentration from 10 to 8 µg/m3.
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Table 1

Number of premature deaths and morbidities avoided per year in Wayne County due to a reduction in PM2.5 

concentration from 10 to 8 µg/m3.

Outcome (age group)
Avoided cases1
(cases per year)

Percent
attributable

(%)

Attributable
rate

(per 100,000)

All-cause premature mortality (>29 years, HIF) 190 (130–260) 1.16 10.48

All-cause premature mortality (>29 years, PAF) 190 (120–240) 1.13 10.22

Cause-specific mortality (>24 years, PAF method)2 230 3.55 12.61

Infant mortality (<1 year) 2 (0–3) 0.77 0.09

Minor restricted activity days (18–64 years) 37,000 (15,000–58,000) 0.44 2,040

Asthma exacerbations (6–18 years)3 28,000 (–34,000–76,000) 2.49 12,639

Work loss days (18–64 years) 21,000 (17,000–24,000) 0.92 1,148

Asthma emergency department visit (> 1 year)3 190 (49–323) 1.11 86.42

Non-fatal MI (≥ 18 years) 160 (29–260) 4.93 8.92

CV hospitalization (≥ 20years) 84 (56–110) 0.30 4.71

Pneumonia hospitalization (>64 years) 26 (4–47) 0.79 1.45

COPD hospitalization (≥20 years) 25 (15–36) 0.40 1.42

Asthma hospitalization (<65 years) 19 (7–30) 0.66 1.05

1
Number of avoided cases is rounded to two significant digits; 95% confidence interval in parentheses.

2
Sum of IHD, stroke, LC and COPD deaths estimated using the PAF method.

3
Among persons with asthma.
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Table 2

Rates of premature mortality, years of life lost and monetized impacts attributable to a reduction in PM2.5 

concentration from 10 to 8 µg/m3 based on baseline mortality rates for the United States, Wayne County and 

Detroit

Baseline Rate Source

Premature
deaths

(per 100,000)
Avoided YLL

(years per 100,000)
Monetized impacts1
(1000$ per 100,000)

National 8.6 124.0 83,000

Wayne County (including Detroit) 10.5 163.6 101,000

Detroit 11.0 194.6 105,000

1
Monetized benefits are in 2010$ projected to a 2020 income level and rounded to the nearest whole number with two significant digits
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Table 3

DALYs and monetized impacts avoided per year for deaths, unscheduled hospitalizations and morbidity 

outcomes in Wayne County due to a reduction in PM2.5 concentration from 10 to 8 µg/m3.

Outcome
DALYs1

(years)2
Monetized impacts3

(1000$)2

Premature mortality3 3052
(2011, 4074)

1,800,000
(1,200,000, 2,400,000)

All morbidities 47
(−28, 108)

36,000
(8,900, 57,000)

Total 3099
(1982, 4182)

1,900,000
(1,200,000, 25,000,000)

Percent attributable to mortality 98.5 % 94.8%

1
DALYs are YLL for mortality outcomes and YLD for morbidity outcomes.

2
95% confidence interval in parentheses.

2
Monetized impacts are calculated using 2010$ projected to a 2020 income level and rounded to the nearest whole number with two significant 

figures.

3
Premature mortality is the sum of premature mortality among adults (>29 years, HIF method) and infant mortality (<1 year).
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Table 4

Benefits per ton for a 2800 tons per year reduction of directly emitted PM2.5 in Wayne County.

Outcome (age group)

Avoided
Cases

(cases per ton)

Monetized
Impacts1

($ per ton)

All-cause premature mortality (>29 years, HIF method) 0.067 643,845

Infant mortality (<1 year) 0.001 5,364

Minor restricted activity days (18–64 years) 13.058 888

Asthma exacerbations (6–18 years)2 9.844 571

Work loss days (18–64 years) 7.346 1,102

Asthma emergency department visit (> 1 year)2 0.067 29

Non-fatal MI (≥ 18 years) 0.057 8,173

CV hospitalization (≥ 20years) 0.030 1,247

Pneumonia hospitalization (>64 years) 0.009 334

COPD hospitalization (≥20 years) 0.009 264

Asthma hospitalization (<65 years) 0.007 107

Total monetized benefits 661,442

1
Monetized benefits are in 2010$ projected to a 2020 income level

2
Among persons with asthma
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Table 5

Criteria used to evaluate potential metrics or urban-scale health impact assessments.

Criterion Description and Implications References

Interpretability Readily understood by lay audiences without need for complex
technical explanations

AbouZahr et al., 2007;
Murray, 2007;

Comparability Can be compared between different populations, control
scenarios or policy alternatives

Sanderson et al., 2006
Walker et al., 2007

Comprehensiveness Measures the total impact on population health by including all
relevant outcomes relevant to the pollutant of interest
Considers timing and severity of the outcomes
Includes multiple exposure pathways or health determinants
(e.g., a public transit policy may reduce air pollution exposures
and promote physical activity)

Bell et al., 2011;
Rabl, 2003;
Wong et al., 2003

Representativeness Data inputs reflect the baseline health status and demographics
of the study population

Bell et al., 2011;
Hubbell et al., 2009

Spatial Resolution Air pollution concentration estimates and baseline health data
reflect the heterogeneity in a population’s demographics, health
status and exposures
The boundaries of the HIA are appropriate for the proposed
project or policy (i.e., city-wide policies vs. localized projects or
programs)

Batterman et al., 2014;
Kheirbek et al., 2013;
Thompson et al., 2014

Temporal Resolution Impacts of acute and chronic exposures assessed
Accounts for anticipated changes in population (e.g., age
structure, baseline rates) over time
Considers lag between the timing of exposure and outcome
occurrence

Bell et al., 2011;
Flachs et al., 2013

Relevant
environmental
stressors

Considers changes in multiple pollutants and pollutant
interactions (e.g., a policy to reduce PM may also influence NOx

or O3 concentrations which have additional impacts)

Burnett et al., 2005;
Dominici et al., 2010

Equity Disaggregates population subgroups by vulnerability or
susceptibility (i.e., race/ethnicity, age, geographic location)

Jerrett et al., 2004;
O’Neill et al., 2008

Consideration of
uncertainty

Identifies and evaluates uncertainty
Uncertainties are communicated effectively

Walker et al., 2007
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Table 6

Summary of strengths and weaknesses of metrics used in urban-scale health impact assessments.

Metric Strengths Limitations

1a Predicted number
of premature
deaths, disease
cases or
unscheduled
hospitalizations
e.g., 190 premature
mortalities avoided
in Wayne county
per year

Easy to interpret
Demonstrates the magnitude of an impact
on a population based on the number
people potentially affected
Population specific input data lead to
estimates that reflect underlying health
status and susceptibility to adverse
outcomes
Stratification based on vulnerability or
susceptibility may lead to equity
considerations

Comprehensiveness is dependent on the
identification and inclusion of all relevant
outcomes
Dependent on selection of CR and on the
baseline rates for outcomes
Provides no information on the duration
or permanence of the impacts
Not all health impacts are independent;
can lead to biased estimates if this
dependence is not accounted for
Cannot be compared directly across
populations of differing size

1b Percent attributable
e.g., 1.16% of
annual deaths in
Wayne County
would be avoided

Explains what fraction of the population
burden is attributable to air pollution
Indicates which option may be more
beneficial in reducing the incidence of a
specific adverse outcome

Interpretation can be limited if estimates
for other exposures are not available for
comparison

1c Attributable rate
e.g., 10.5 avoided
premature
moralities per
100,000 people

Makes metrics comparable between
populations of differing size

Rates can be harder to interpret for those
unfamiliar with their use (Walker et al., 2007)

2 DALYs Measures mortality and morbidity in one
metric using time as a common unit
Accounts for the severity and permanence
of an outcome (e.g., duration and disability
weight)

Age-weighting and assignment of
disability weights can be uncertain or
controversial
Diminished importance of morbidity
outcomes due to weighting factors

3 Monetized impacts Often used in regulatory analyses and
HIAs; can facilitate comparisons with
other types of impacts (e.g., economic)
Frames health outcomes in the same
manner as non-health considerations
Facilitate cost-effectiveness or cost-benefit
analyses

US EPA methods for monetized
premature mortality does not consider the
number of years of life lost, only the total
number of premature deaths
May not accurately reflect the total
societal costs of morbidity outcomes

4 Functional-unit
based metrics (e.g.,
benefits per ton)

Appropriate when changes in ambient
concentrations are difficult to predict but
estimated changes in emissions are
available
Can identify emission sources for targeted
reductions (e.g., sector specific metrics)

Need to account for the location,
proximity to populations, and type of
emissions source
Impacts (benefits) per ton estimates can
be very uncertain depending on the data
inputs
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